Hurricane Katrina approaches the U.S. Gulf Coast on Aug. 28, 2005. (Photo: NOAA)
"It's premature to conclude there is a significant long-term trend present," Knutson tells MNN, although he adds that's simply due to a lack of long-term data. "Our most reliable intensity records go back to 1980 or so, but things are a little trickier if you try to figure out if intensities were greater in the 1950s versus recently, or if there's a rise over time. That's more difficult to answer because of limitations in the data sets."
That said, Knutson and many of his colleagues expect global warming to eventually boost hurricane intensity, based on their knowledge of how hurricanes work as well as the forecasts of advanced computer models. Thanks to those models, scientists can simulate storms under past, present and future conditions, helping them recreate the recent uptick in storms and project what might happen next.
"These models are indicating, at least the higher-resolution models, a greater intensity of hurricanes in the warmer climate, even though some models have fewer hurricanes overall," Knutson says. "So the picture that's emerging is fewer tropical storms and hurricanes globally, but the ones we have would be a little more intense than the ones we have today, and the rainfall amounts would also be greater."
One measure of hurricane intensity is the power dissipation index (PDI), developed by MIT atmospheric scientist Kerry Emanuel to measure how much power a cyclone releases during its life span. Below is a time series, produced by Emanuel, that shows tropical Atlantic sea-surface temperatures (SSTs) each September compared with the annual PDI of hurricanes. (Note: The yearly data are smoothed to emphasize fluctuations on time scales of at least three years.)
Image: NOAA Geophysical Fluid Dynamics Laboratory
"It's possible that aerosols over the Atlantic have caused some changes in hurricane activity over time, and I'm thinking specifically of the relative lull in activity in the 1970s and '80s," Knutson tells MNN. "That's an example of a possible anthropogenic effect on hurricane climate activity, but not strictly a long-term trend like you'd expect from the effect of greenhouse gases. There are some preliminary indications that aerosol forcing may have caused that temporary reduction."
That leads some skeptics to argue the past decade's hurricane flurry is just a rebound from this lull, but Knutson says there's little evidence of that, either. Rebounding may play a role, but it's hard to ignore the effect SSTs can have on hurricane intensity. And while it's premature to blame observed PDI increases on manmade climate change, such a relationship is still widely forecast for the near future.
Image: NOAA GFDL
The chart below, which was used in the 2010 study, illustrates these projections by showing the modeled frequency of Atlantic cyclones under two scenarios: current conditions and a warmer climate in the late 21st century.
Image: NOAA GFDL
Despite scientists' general agreement that warming seas will boost the number of major Atlantic hurricanes, there is still widespread caution not only in blaming climate change for individual storms, but also in blaming it for any tropical cyclone activity to date. "[W]e estimate that detection of this projected anthropogenic influence on hurricanes should not be expected for a number of decades," Knutson writes in a summary of his research for NOAA. "While there is a large rising trend since the mid-1940s in category 4-5 numbers in the Atlantic, our view is that these data are not reliable for trend calculations until they have been further assessed for data homogeneity problems, such as those due to changing observing practices."
We may have to wait decades to learn precisely how global warming affects hurricanes, but Knutson also warns against confusing this uncertainty with a lack of consensus about warming itself. "The relatively conservative confidence levels attached to [hurricane] projections, and the lack of a claim of detectable anthropogenic influence at this time, contrasts with the situation for other climate metrics such as global mean temperature," he writes, adding that international research "presents a strong body of scientific evidence that most of the global warming observed over the past half century is very likely due to human-caused greenhouse gas emissions."
For more about the relationship between climate change and hurricanes, check out this recent PBS NewsHour interview with MIT's Kerry Emanuel on the subject:
Related severe weather stories on MNN:
No comments:
Post a Comment