More partial and total shutdowns of older coal and nuclear power plants predicted as air, river temps get warmer
By Summit Voice
SUMMIT COUNTY â" Lack of adequate cooling water supplies have already resulted in reduced production and even temporary shutdowns of several thermoelectric power plants, and global warming could exacerbate those problems, potentially cutting production by up to 19 percent in some places.
Just last summer, the the Browns Ferry Nuclear Plant in Alabama had to shut down more than once because the Tennessee Riverâs water was too warm to use it for cooling.
That problem will become more common, according to a group of researchers from the University of Washington and Europe, who projected impacts for the next 50 years. According to the study, the likelihood of extreme drops in power generation â" complete or almost-total shutdowns â" is projected to almost triple.
âThis study suggests that our reliance on thermal cooling is something that weâre going to have to revisit,â said co-author Dennis Lettenmaier, a University of Washington professor of civil and environmental engineering.
Thermoelectric plants, which use nuclear or fossil fuels to heat water into steam that turns a turbine, supply more than 90 percent of U.S. electricity and account for 40 percent of the nationâs freshwater usage. In Europe, these plants supply three-quarters of the electricity and account for about half of the freshwater use.
While much of this water is ârecycled,â the power plants rely on consistent volumes of water, at a particular temperature, to prevent the turbines from overheating.
Reduced water availability and warmer water, caused by increasing air temperatures associated with climate change, mean higher electricity costs and less reliability.
While plants with cooling towers will be affected, results show older plants that rely on âonce-through coolingâ are the most vulnerable. These plants pump water directly from rivers or lakes to cool the turbines before returning the water to its source, and require high flow volumes.
The study projects the most significant U.S. effects at power plants situated inland on major rivers in the Southeast that use once-through cooling, such as the Browns Ferry plant in Alabama and the New Madrid coal-fired plant in southeastern Missouri.
âThe worst-case scenarios in the Southeast come from heat waves where you need the power for air conditioning,â Lettenmaier said. âIf you have really high power demand and the river temperatureâs too high so you need to shut your power plant down, you have a problem.â
The study used hydrological and water temperature models developed by Lettenmaier and co-author John Yearsley, a UW affiliate professor of civil and environmental engineering.
The European authors combined these with an electricity production model and considered two climate-change scenarios: one with modest technological change and one that assumed a rapid transition to renewable energy. The range of projected impacts to power systems covers both scenarios.
The U.S. and Europe both have strict environmental standards for the volume of water withdrawn by plants and the temperature of the water discharged. Warm periods coupled with low river flows could thus lead to more conflicts between environmental objectives and energy production.
Discharging water at elevated temperatures causes yet another problem: downstream thermal pollution.
âHigher electricity prices and disruption to supply are significant concerns for the energy sector and consumers, but another growing concern is the environmental impact of increasing water temperatures on river ecosystems, affecting, for example, life cycles of aquatic organisms,â said first author Michelle van Vliet, a doctoral student at the Wageningen University and Research Centre in the Netherlands.
Given the high costs and the long lifetime of power plants, the authors say, such long-range projections are important to let the electricity sector adapt to changes in the availability of cooling water and plan infrastructure investments accordingly.
One adaptation strategy would be to reduce reliance on freshwater sources and place the plants near saltwater, according to corresponding author Pavel Kabat, director of the International Institute for Applied Systems Analysis in Austria and van Vlietâs doctoral adviser.
âHowever, given the life expectancy of power plants and the inability to relocate them to an alternative water source, this is not an immediate solution, but should be factored into infrastructure planning,â he said. âAnother option is to switch to new gas-fired power plants that are both more efficient than nuclear- or fossil-fuel-power plants and that also use less water.â
39.586656 -106.092081
Filed under: climate and weather, energy, Environment, global warming Tagged: | Browns Ferry Nuclear Power Plant, climate change, global warming, power production, Tennessee River, thermoelectric power, University of Washington, Wageningen University and Research Centre
No comments:
Post a Comment